Neuroimage. 2024 May 24:120652. doi: 10.1016/j.neuroimage.2024.120652. Online ahead of print.
ABSTRACT
Accurate processing and analysis of non-human primate (NHP) brain magnetic resonance imaging (MRI) serves an indispensable role in understanding brain evolution, development, aging, and diseases. Despite the accumulation of diverse NHP brain MRI datasets at various developmental stages and from various imaging sites/scanners, existing computational tools designed for human MRI typically perform poor on NHP data, due to huge differences in brain sizes, morphologies, and imaging appearances across species, sites, and ages, highlighting the imperative for NHP-specialized MRI processing tools. To address this issue, in this paper, we present a robust, generic, and fully automated computational pipeline, called non-human primates Brain Extraction and Segmentation Toolbox (nBEST), whose main functionality includes brain extraction, non-cerebrum removal, and tissue segmentation. Building on cutting-edge deep learning techniques by employing lifelong learning to flexibly integrate data from diverse NHP populations and innovatively constructing 3D U-NeXt architecture, nBEST can well handle structural NHP brain MR images from multi-species, multi-site, and multi-developmental-stage (from neonates to the elderly). We extensively validated nBEST based on, to our knowledge, the largest assemblage dataset in NHP brain studies, encompassing 1,469 scans with 11 species (e.g., rhesus macaques, cynomolgus macaques, chimpanzees, marmosets, squirrel monkeys, etc.) from 23 independent datasets. Compared to alternative tools, nBEST outperforms in precision, applicability, robustness, comprehensiveness, and generalizability, greatly benefiting downstream longitudinal, cross-sectional, and cross-species quantitative analyses. We have made nBEST an open-source toolbox (https://github.com/TaoZhong11/nBEST) and we are committed to its continual refinement through lifelong learning with incoming data to greatly contribute to the research field.
PMID:38797384 | DOI:10.1016/j.neuroimage.2024.120652