Mitochondrial fission is required for thermogenesis in brown adipose tissue
Mitochondrial fission is required for thermogenesis in brown adipose tissue

Mitochondrial fission is required for thermogenesis in brown adipose tissue

PLoS One. 2024 Dec 9;19(12):e0312352. doi: 10.1371/journal.pone.0312352. eCollection 2024.

ABSTRACT

Brown adipose tissue (BAT) thermogenesis is pivotal for maintaining body temperature and energy balance. Mitochondrial morphology is dynamically controlled by a balance between fusion and fission, which is crucial for cell differentiation, response to metabolic insults, and heat production. Dynamin-related protein 1 (Drp1) is a key regulator of mitochondrial fission. This study investigates the role of Drp1 in BAT development and thermogenesis by generating Drp1-deficient mice. These mice were created by crossing Drp1 floxed mice with fatty acid-binding protein 4-Cre (aP2-Cre) transgenic mice, resulting in aP2-Cre+/-Drp1flox/flox (aP2-Drp1f/f) mice. The aP2-Drp1f/f mice exhibited severe BAT and brain hypoplasia, with the majority dying within 48 hours postnatally, highlighting Drp1’s crucial role in neonatal survival. Impaired thermogenic responses were observed in aP2-Drp1f/f mice, characterized by significantly decreased expression of thermogenic and lipogenic genes in BAT. Ultrastructural analysis revealed disrupted mitochondrial morphology and reduced lipid droplet content in BAT. The few surviving adult aP2-Drp1f/f mice also showed impaired BAT and brain development, along with BAT thermogenesis dysfunction during cold exposure. Our findings underscore the essential role of Drp1-mediated mitochondrial fission in BAT thermogenesis and neonatal survival, providing insights into potential therapeutic approaches for metabolic disorders.

PMID:39652536 | DOI:10.1371/journal.pone.0312352