J Transl Med. 2024 Jun 20;22(1):583. doi: 10.1186/s12967-024-05370-w.
ABSTRACT
BACKGROUND: Infectious meningitis/encephalitis (IM) is a severe neurological disease that can be caused by bacterial, viral, and fungal pathogens. IM suffers high morbidity, mortality, and sequelae in childhood. Metagenomic next-generation sequencing (mNGS) can potentially improve IM outcomes by sequencing both pathogen and host responses and increasing the diagnosis accuracy.
METHODS: Here we developed an optimized mNGS pipeline named comprehensive mNGS (c-mNGS) to monitor DNA/RNA pathogens and host responses simultaneously and applied it to 142 cerebrospinal fluid samples. According to retrospective diagnosis, these samples were classified into three categories: confirmed infectious meningitis/encephalitis (CIM), suspected infectious meningitis/encephalitis (SIM), and noninfectious controls (CTRL).
RESULTS: Our pipeline outperformed conventional methods and identified RNA viruses such as Echovirus E30 and etiologic pathogens such as HHV-7, which would not be clinically identified via conventional methods. Based on the results of the c-mNGS pipeline, we successfully detected antibiotic resistance genes related to common antibiotics for treating Escherichia coli, Acinetobacter baumannii, and Group B Streptococcus. Further, we identified differentially expressed genes in hosts of bacterial meningitis (BM) and viral meningitis/encephalitis (VM). We used these genes to build a machine-learning model to pinpoint sample contaminations. Similarly, we also built a model to predict poor prognosis in BM.
CONCLUSIONS: This study developed an mNGS-based pipeline for IM which measures both DNA/RNA pathogens and host gene expression in a single assay. The pipeline allows detecting more viruses, predicting antibiotic resistance, pinpointing contaminations, and evaluating prognosis. Given the comparable cost to conventional mNGS, our pipeline can become a routine test for IM.
PMID:38902725 | DOI:10.1186/s12967-024-05370-w