J Neuroeng Rehabil. 2024 Apr 24;21(1):61. doi: 10.1186/s12984-024-01349-2.
ABSTRACT
BACKGROUND: Brain-computer interface (BCI) technology offers children with quadriplegic cerebral palsy unique opportunities for communication, environmental exploration, learning, and game play. Research in adults demonstrates a negative impact of fatigue on BCI enjoyment, while effects on BCI performance are variable. To date, there have been no pediatric studies of BCI fatigue. The purpose of this study was to assess the effects of two different BCI paradigms, motor imagery and visual P300, on the development of self-reported fatigue and an electroencephalography (EEG) biomarker of fatigue in typically developing children.
METHODS: Thirty-seven typically-developing school-aged children were recruited to a prospective, crossover study. Participants attended three sessions: (A) motor imagery-BCI, (B) visual P300-BCI, and (C) video viewing (control). The motor imagery task involved an imagined left- or right-hand squeeze. The P300 task involved attending to one square on a 3 × 3 grid during a random single flash sequence. Each paradigm had respective calibration periods and a similar visual counting game. Primary outcomes were self-reported fatigue and the power of the EEG alpha band both collected during resting-state periods pre- and post-task. Self-reported fatigue was measured using a 10-point visual analog scale. EEG alpha band power was calculated as the integrated power spectral density from 8 to 12 Hz of the EEG spectrum.
RESULTS: Thirty-two children completed the protocol (age range 7-16, 63% female). Self-reported fatigue and EEG alpha band power increased across all sessions (F(1,155) = 33.9, p < 0.001; F = 5.0(1,149), p = 0.027 respectively). No differences in fatigue development were observed between session types. There was no correlation between self-reported fatigue and EEG alpha band power change. BCI performance varied between participants and paradigms as expected but was not associated with self-reported fatigue or EEG alpha band power.
CONCLUSION: Short periods (30-mintues) of BCI use can increase self-reported fatigue and EEG alpha band power to a similar degree in children performing motor imagery and P300 BCI paradigms. Performance was not associated with our measures of fatigue; the impact of fatigue on useability and enjoyment is unclear. Our results reflect the variability of fatigue and the BCI experience more broadly in children and warrant further investigation.
PMID:38658998 | DOI:10.1186/s12984-024-01349-2