Haematologica. 2024 Jun 6. doi: 10.3324/haematol.2023.284853. Online ahead of print.
ABSTRACT
Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukemia (Ph+ BCPALL) is a high-risk acute lymphoblastic leukemia subtype characterized by the presence of BCR::ABL1 fusion gene. Tyrosine kinase inhibitors (TKIs) combined with chemotherapy are established as the first-line treatment. Additionally, rituximab (RTX), an anti-CD20 monoclonal antibody (mAb) is administered in adult BCP-ALL patients with ≥20% of CD20+ blasts. In this study, we observed a marked prevalence of CD20 expression in patients diagnosed with Ph+ BCP-ALL, indicating a potential widespread clinical application of RTX in combination with TKIs. Consequently, we examined the influence of TKIs on the antitumor effectiveness of anti-CD20 mAbs by evaluating CD20 surface levels and conducting in vitro functional assays. All tested TKIs were found to uniformly downregulate CD20 on leukemic cells, diminishing the efficacy of RTX-mediated complement-dependent cytotoxicity. Interestingly, these TKIs displayed varied effects on NK cell-mediated antibody-dependent cytotoxicity and macrophage phagocytic function. While asciminib demonstrated no inhibition of effector cell functions, dasatinib notably suppressed the anti-CD20-mAb-mediated NK cell cytotoxicity and macrophage phagocytosis of BCP-ALL cells. Dasatinib and ponatinib also decreased NK cell degranulation in vitro. Importantly, oral administration of dasatinib, but not asciminib, compromised NK cell activity within patients’ blood, determined by ex vivo degranulation assay. Our results indicate that asciminib might be preferred over other TKIs for combination therapy with anti-CD20 mAbs.
PMID:38841802 | DOI:10.3324/haematol.2023.284853