J Neuroimmunol. 2024 Jul 31;395:578424. doi: 10.1016/j.jneuroim.2024.578424. Online ahead of print.
ABSTRACT
Neonatal immune activation (NIA) through exposure to lipopolysaccharide (LPS) induces adult behavioral changes in rodents that resemble symptoms of developmental disorders, such as autism spectrum disorder. The neonatal timing of LPS exposure appears to play a crucial role in determining the nature and extent of long-term changes. This study aims to explore whether a 3-day LPS-NIA triggers sex- and age-related changes in gut function, potentially linking LPS-NIA to gastrointestinal dysfunction. Male and female Swiss mice received intraperitoneal injections of LPS or saline on postnatal days (PN) 3, 5, and 7. At PN35 (juvenile) and PN70 (adult), gut inflammation and oxidative stress were evaluated in addition to assessments of working memory, depressive-like symptoms, sociability, and repetitive behavior. Gut examination showed elevated C-X-C motif chemokine receptor 3 (CXCR3) in LPS-NIA mice, while MyD88 and Zonulin expressions were significantly higher only in adult LPS-NIA females. Interleukin (IL)-23 expression increased in juvenile and adult male and juvenile female LPS-NIA mice. Oxidative changes included decreased duodenal reduced glutathione (GSH) in juvenile females and ileal GSH in adult females exposed to LPS-NIA. Regarding behavioral alterations, adult LPS-NIA females exhibited depressive-like behavior. Working memory deficits were observed across all LPS-NIA groups. Only juvenile LPS-NIA females increased grooming, while rearing was higher in adult LPS-NIA mice of both sexes. The findings imply that LPS-NIA impacts intestinal barrier function and causes gut inflammatory alterations that are sex- and age-specific. These findings pave the way for exploring potential mechanisms that could contribute to LPS-induced gastrointestinal disturbances among individuals with ASD.
PMID:39128432 | DOI:10.1016/j.jneuroim.2024.578424