An explainable long short-term memory network for surgical site infection identification
An explainable long short-term memory network for surgical site infection identification

An explainable long short-term memory network for surgical site infection identification

Surgery. 2024 Apr 13:S0039-6060(24)00142-9. doi: 10.1016/j.surg.2024.03.006. Online ahead of print.

ABSTRACT

BACKGROUND: Currently, surgical site infection surveillance relies on labor-intensive manual chart review. Recently suggested solutions involve machine learning to identify surgical site infections directly from the medical record. Deep learning is a form of machine learning that has historically performed better than traditional methods while being harder to interpret. We propose a deep learning model, a long short-term memory network, for the identification of surgical site infection from the medical record with an attention layer for explainability.

METHODS: We retrieved structured data and clinical notes from the University of Utah Health System’s electronic health care record for operative events randomly selected for manual chart review from January 2016 to June 2021. Surgical site infection occurring within 30 days of surgery was determined according to the National Surgical Quality Improvement Program definition. We trained the long short-term memory model along with traditional machine learning models for comparison. We calculated several performance metrics from a holdout test set and performed additional analyses to understand the performance of the long short-term memory, including an explainability analysis.

RESULTS: Surgical site infection was present in 4.7% of the total 9,185 operative events. The area under the receiver operating characteristic curve and sensitivity of the long short-term memory was higher (area under the receiver operating characteristic curve: 0.954, sensitivity: 0.920) compared to the top traditional model (area under the receiver operating characteristic curve: 0.937, sensitivity: 0.736). The top 5 features of the long short-term memory included 2 procedure codes and 3 laboratory values.

CONCLUSION: Surgical site infection surveillance is vital for the reduction of surgical site infection rates. Our explainable long short-term memory achieved a comparable area under the receiver operating characteristic curve and greater sensitivity when compared to traditional machine learning methods. With explainable deep learning, automated surgical site infection surveillance could replace burdensome manual chart review processes.

PMID:38616153 | DOI:10.1016/j.surg.2024.03.006