Sci Rep. 2024 Oct 1;14(1):22748. doi: 10.1038/s41598-024-72271-9.
ABSTRACT
Antenatal hydronephrosis (HN) impacts up to 5% of pregnancies and requires close, frequent follow-up monitoring to determine who may benefit from surgical intervention. To create an automated HN Severity Index (HSI) that helps guide clinical decision-making directly from renal ultrasound images. We applied a deep learning model to paediatric renal ultrasound images to predict the need for surgical intervention based on the HSI. The model was developed and studied at four large quaternary free-standing paediatric hospitals in North America. We evaluated the degree to which HSI corresponded with surgical intervention at each hospital using area under the receiver-operator curve, area under the precision-recall curve, sensitivity, and specificity. HSI predicted subsequent surgical intervention with > 90% AUROC, > 90% sensitivity, and > 70% specificity in a test set of 202 patients from the same institution. At three external institutions, HSI corresponded with AUROCs ≥ 90%, sensitivities ≥ 80%, and specificities > 50%. It is possible to automatically and reliably assess HN severity directly from a single ultrasound. The HSI stratifies low- and high-risk HN patients thus helping to triage low-risk patients while maintaining very high sensitivity to surgical cases. HN severity can be predicted from a single patient ultrasound using a novel image-based artificial intelligence system.
PMID:39349526 | DOI:10.1038/s41598-024-72271-9