Concurrent and longitudinal neurostructural correlates of irritability in children
Concurrent and longitudinal neurostructural correlates of irritability in children

Concurrent and longitudinal neurostructural correlates of irritability in children

Neuropsychopharmacology. 2024 Aug 17. doi: 10.1038/s41386-024-01966-4. Online ahead of print.

ABSTRACT

Irritability, or an increased proneness to frustration and anger, is common in youth; however, few studies have examined neurostructural correlates of irritability in children. The purpose of the current study was to examine concurrent and longitudinal associations between brain structure and irritability in a large sample of 9-10-year-old children. Participants included 10,647 children from the Adolescent Brain Cognitive Developmentsm Study (ABCD Study®). We related a latent irritability factor to gray matter volume, cortical thickness, and surface area in 68 cortical regions and to gray matter volume in 19 subcortical regions using structural equation modeling. Multiple comparisons were adjusted for using the false discovery rate (FDR). After controlling for age, sex, race/ethnicity, scanner model, parent’s highest level of education, medication use, and total intracranial volume, irritability was associated with smaller volumes in primarily temporal and parietal regions at baseline. Longitudinal analyses showed that baseline gray matter volume did not predict irritability symptoms at the 3rd-year follow-up. No significant associations were found for cortical thickness or surface area. The current study demonstrates inverse associations between irritability and volume in regions implicated in emotional processing/social cognition, attention allocation, and movement/perception. We advance prior research by demonstrating that neurostructural differences associated with irritability are already apparent by age 9-10 years, extending this work to children and supporting theories positing socioemotional deficits as a key feature of irritability.

PMID:39154134 | DOI:10.1038/s41386-024-01966-4