Preparation of composite calcium phosphate cement scaffold loaded with Hedysarum polysaccharides and its efficacy in repairing bone defects
Preparation of composite calcium phosphate cement scaffold loaded with Hedysarum polysaccharides and its efficacy in repairing bone defects

Preparation of composite calcium phosphate cement scaffold loaded with Hedysarum polysaccharides and its efficacy in repairing bone defects

J Mater Sci Mater Med. 2024 Aug 13;35(1):49. doi: 10.1007/s10856-024-06818-7.

ABSTRACT

It’s imperative to create a more ideal biological scaffold for bone defect repair. Calcium phosphate bone cements (CPC) could be used as a scaffold. Some ingredients and osteogenic factors could be added to improve its poor mechanical properties and biological activity. As a macromolecule extracted from traditional Chinese medicine, Hedysarum polysaccharides (HPS) would significantly promote the osteogenic activity of bone biomaterials. Zirconium oxide and starch were added to the solid phase and citric acid was added to the liquid phase to optimize CPC. HPS was loaded onto the scaffold as an osteogenic factor, and the prepared CPS + HPS was characterized. Further, the cytocompatibility of CPS + HPS was assessed according to activity, differentiation, and calcification in neonatal rat calvarial osteoblasts, and the biosafety of CPS + HPS was evaluated according to acute toxicity, pyrogen, sensitization, and hemolysis. The success of CPS + HPS in repairing bone defects was evaluated by using a rabbit femur implantation experiment. After optimization, CPS-20-CA-5 containing 10% starch and 5% citric acid displayed the highest mechanical strength of 28.96 ± 0.03 MPa. HPS-50 was demonstrated to exert the best osteogenic effect. The combination of CPS + HPS achieved HPS-loaded CPC. Material characterization, cytocompatibility, biosafety, and femoral implantation experiments indicated that CPS + HPS possessed better pressure resistance and improved osteogenic ability in bone defect repair.CPS + HPS demonstrated effective pressure resistance and superior osteogenic ability, which may be of great significance for bone defects and bone tissue engineering to promote bone regeneration and repair.

PMID:39136848 | DOI:10.1007/s10856-024-06818-7