Cost Eff Resour Alloc. 2024 May 22;22(1):44. doi: 10.1186/s12962-024-00550-3.
ABSTRACT
BACKGROUND: Deep learning (DL) is a new technology that can assist prenatal ultrasound (US) in the detection of congenital heart disease (CHD) at the prenatal stage. Hence, an economic-epidemiologic evaluation (aka Cost-Utility Analysis) is required to assist policymakers in deciding whether to adopt the new technology.
METHODS: The incremental cost-utility ratios (CUR), of adding DL assisted ultrasound (DL-US) to the current provision of US plus pulse oximetry (POX), was calculated by building a spreadsheet model that integrated demographic, economic epidemiological, health service utilization, screening performance, survival and lifetime quality of life data based on the standard formula:
RESULTS: The addition of DL assisted US, which is associated with increased sensitivity (95% vs 58.1%), resulted in far fewer undiagnosed infants (16 vs 102 [or 2.9% vs 15.4%] of the 560 and 659 births, respectively). Adoption of DL-US will add 1,204 QALYs. with increased screening costs 22.5 million USD largely offset by decreased treatment costs (20.4 million USD). Therefore, the new DL-US technology is considered “very cost-effective”, costing only 1,720 USD per QALY. For most performance combinations (sensitivity > 80%, specificity > 90%), the adoption of DL-US is either cost effective or very cost effective. For specificities greater than 98% (with sensitivities above 94%), DL-US (& POX) is said to “dominate” US (& POX) by providing more QALYs at a lower cost.
CONCLUSION: Our exploratory CUA calculations indicate the feasibility of DL-US as being at least cost-effective.
PMID:38773527 | DOI:10.1186/s12962-024-00550-3